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1. Introduction

The objective to distil the essential properties of categories considered
by topologists and to unify their investigation lead to the intreduction of
topological categories (see {He 74], e.g.}), i.e., small-fibred categories
of structured sets and structure-compatible maps which have unigquely deter-
mined initial structures and where the cmpty set and the singletons carry
only one structure. In order to develop a satisfactory concept of differen-
tial calculus, functional analysis, homotopy theory, and topological alge-
bra in topological categories, additional "convenience" properties have
been found desirable. The strongest of these properties is that the cate-

gery be a topological universe:

1.1 Definition [Ne 84: 2.0]. & topological category is called a to-
pological universe iff final epi-sinks are preserved by pullbacks along

arbitrary morphisms.

There is alsp a categorial motivation for studying tepological universes:
They are exactly those topoliogical categeries {in the above sense] that are
quasitopoi in the sense of Penon [Pe 73], [Pe 77: 4.8]. For details on this
connection, see [Sc 86: Sectien 21, e.g. We will here not investigate the
categorial aspects, however,

The concept of a topological universe splits naturally into two simpler
ones: A topological category is a topological universe iff it is cartesian
closed and hereditary. Recall that a category A with finite products is
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cartesian closed iff for each ebject X € A, the functor -=<¥:A—> A

has a right adjoint, which is eguivalent to the existence of function
spaces fulfilling an exponential law if A s topological.

While the significance of cartesian closedness has been recognized for
several decades, and there are extensive investigations, the concept of
heredity has only recently been discussed.

1.2 Definition [He 86]1. A topological category is called hereditary
iff guotients and coproducts are preserved by pullbacks along embeddings
{i.e., for any quotient f:X% —> Y and any subspace Z of Y, the re-
striction f rf“(z} :f_1(EJ — = 7 is a guotient; and for any coproduct
ilﬁi and any subspace 7 of ilﬁi , L= ijjxi nzy i.

Section 2 contains a summary and some improvements of results on heredity
in topelogical categories from [Sc 861, In particular, we give some charac-
terizations of hereditary topelogical categories, and conditions for the
heredity of subcategories of horeditary topological categories. Surprising-
1y, our results show strong similarities to results on cartesian closedness;
e.g., one-point-extensions play a similar role for heredity as function
spaces for cartesian closedness.

The category Top of topelogical spaces and continuous maps i not he-
reditary. Indeed, the only topological subcategories of Top that are he-
reditary are the discrete and the indiscrete spaces [He 83: Thearem 2]. Even
generalization to full subcategories of TYop which are closed under forma-
tion of subspaces does not much to improve the situation: such categories
are hereditary {in a slightly gerneralized sense} if and only if they con-
sist either of discrete or of indiscrete spaces [He 87: 3.21. Consequently,
if looking for hereditary categories as replacements for Tep, one has to
consider supercategories. Matural candidates are cateqories of convergence
spaces, Applications of the theory of Section 2 to categories of convergence
spaces are sketched inm Section 3.

Z, Heredity in topelogical categories

Before we can formulate a first characterization of hereditary topologi-
cal categories, we need one more definition,

2.1 Definition. Let A be a topolegical category.
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{1) A morphism from a subspace of ¥ € A ta Y€ A is called a partial
morphism from X o Y.
{2} An A-object Yﬁ

bedded into T# by addition of a single point e, and fn; SYENY par;iai
morphism f:Z — ¥ from an object ¥ to Y, the map f° (X ——> ¥* de-
fined by FA(x) = f(x) if x €7, f(x) ==, if x ¢ Z, is a morphism. If

¥
Y has a ong-point-extension, we say that partial morphisms to Y are re-

is a ona-point-extension of Y iff ¥ can be em-

presentable,
{3} If partia) morphisms to all A-objects are representable, we simply
say that partial morphisms in A are representable.

2.2 ‘Theovem [He B6: Theorem 11. A topological category is hereditary
iff partial morphisms are representablie.

From 2.2 it is clear that one-point-extensions play an important role
for the heredity of a topological category, It is therefore desirable to
have concrete and handy descriptions of one-point-extensions. Two {1lumi-
native descriptions are given in 2.3 and 2.4, Recall that every topological
category is partially ordered by defining X < X' iff j¥| = X't and the
identity map is a morphism from X to X' {where [X| denotes the under-
lying set of the object X).

2.3 Proposition [5c 86: 2.6]. If A s a hereditary topological cate-
gory and vV € A, then Y# is the greatest A-object with unde;1ying set
A U{“W] which contains Y as a subspace. In particular, Y© is uniguely

determined {up to isomorphism).

If f is not hereditary, there need not always be a greatest A-object
with uﬁaer1ying set |Y|Ljﬁwv} intas which Y can be embedded (3.4{2}};
even if these greatest objects exist for every Y € A, A need not be hered-
itary (3.587.

Recall that a subclass D of A is said to be finally dense in A iff
for every A-object ¥, the A-morphisms from D-objects to ¥ farm a final
sink., {(Initially dense subclasses are defined dually.)

2.4 Proposition [5c 86: 2.1, 2.9]. If Ais a hereditary topolagical
cafgagry then for any Y € A and for any finally dense subclass D of A
{in particular, D = A}, the sink
EFK X — | ¥ep, f:Z —> Y partial morphism from X to 1} is 2
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final epi-sink,

# is bounded from

While in a hereditary topological category A, by 2.3, ¥
above, being the greatest object {(with underlying set |Y]LJ{mY} ) with the
property that Y s a subspace, 2.4 shows that Y# iz also bounded from
below: it is the smallest object making all extensions of partial morphisms
to Y A-morphisms. Notice the strong analogy to greatest conjoining and
smallest splitting structures for function spaces. It carries even further:
greatest conjoining structures need not always exist: smallest splitting
structures exist in every topological category and provide an endo-functor.
fmalogously, the finality construction of 2.4 can be carried out n every
topological category, whether it is hereditary or not, and yields an endo-
functor.

2.5 Definition [Sc 86: 2.8]1, For any object Y of a topelogical cat-
gqory A, we denote by [Y] [oF [Y]A, if necessary to avoid ambiguities}
the A-object endowed with the final A-structure with respect to the family
{fx s Y[ ud=yd L X €A, F:7 — ¥ partial morphism from ¥ to Y}.

For hereditary topological categories, we will use the notations [Y]
and v interchangeably (even when not explicitly referring to the finality
construction of 2,5).

We can now formulate more characterizations for the heredity of a topo-
Togical category A, Hotice that 2.6(3) provides a particularly simple
check if A has a very small or very simple initially dense subclass.—
Again, we ;ﬁu1d Tike to point out the similarities to characterizations of
cartesian ¢losedness by means of splitting and canjoining structures {com-
pare with [Sc 83a: 3.1, 3.2] or [S¢ 83b: 2.2.10]}.

2.6 Theorem [5¢ 86: 2.11]. Let D be an initially dense subclass of
théngpﬂlagﬁca1 category A. The following conditions are equivalent:

(1} A is hereditary.

(2} Far any Y € D, partial morphisms to Y are representable.

(3} For any ¥ € D, the inclusion map J:Y —> [Y] is an embedding.

{4) For any Y € D, there is a greatest object with underlying set
| Y3 Ufc?] which cantaine Y as a subspace, and this object coincides
with [Y].

We conclude this section with conditions for subcategories of hereditary
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topelogical categories to be heraditary. We consider the cases of bireflec-
tive and bicoreflective subcategories. Analogous results concerning carte-
sjan closedness may be found in [5c B3b: 2.2.11, 2.3.7, 2.3.9, 2.3.18,
2.3.17).

2.7 Theorem [Sc 86: 3.1, 3.4], £Sc 87]. Let A be a heraditary topo-
logical category, B a bireflective subcategory of A, and D an initially
dense subclass of B. Then the following conditions are equivalent:

(1) B is hereditary, and one-point-extensions in B are formed as in A.

{2} B is closed with respect to ong-point-extensions of D-objects in A
{i.e., [Y]H €B forall VvelDi}.

(3) The reflector from A to B vprescrves subspaces of the form
Ye—> [¥]ly, ¥ € 0.

(4) The reflector from A to B preserves suhspaces.
If B s, in adéition, finally dense in A, then the above conditions are
equivalent to:

{5) B 1is hereditary.

0f course, the implication (1)={5) in 2.7 holds for every bireflective
subcategory B of a hereditary topological category A. Without any addi-
tipnal conditian, the converse is not true (3.3{2}). Final density of B
is sufficient, but not necessary for the equivalence (1) = (5) (see 3.3(1).

2.8 Theorem [Sc 86: 4.1, 4.3]. Let A be a hereditary topolegical
category and B a bicereflective subcategory of A which is closed under
formation of subspaces in A. Then B is hereditary, and the one-point-
extensions in [ are obtained as the careflective modifications of the
one-point-extensions in A. In particular, this holds if B fis bireflec-

tive as well as bicoreflective in A,

3.  Applications to categories of convergence Spaces

We will now illustrate possibilities to use the results of Section 2 by
applying them to some familiar categories of convergence spaces.

Since, unfortunately, the notation is not quite settled, we start, for
convenience of the reader, by recording the definitions. For references on
convergence concepts, we refer to [Sc 83a] and [5c 791, e.q.

3.1 Definition. A convergence space ¥ iz a set equipped with a
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function which assigns to each point x € ¥ certain filters g {rnot neces-
sarily proper), calied the fiiters converging to X and written E - %
or simply § ——> x, subject to the following conditions:

For all1 x € ¥, x — x (where % denotes the ultrafilter generated hy
{x}};

%:g—:‘x implies g—:»}:.
A function f:X —— ¥ between convergence spaces is contincous ff
5 ¥ X implies f{§ ) — fix), where f(gf) denotes the filter on Y
generated by { f{F] | F € £ ). We denote the category of convergence
spaces and continuous functions by Conv,
A convergence space is called

localized iff § — x implies giwi —

limit space iff § —= x and ¢ —> x implies §0l} — x,

pseudotopological iff S’———a % whenever bU{, —— x for every ultra-
filter ¥ o cf and

pretopological iff for all x € ¥, W {x) = M 5'} y —= x } conver-
ges to x. The corresponding subcategories of Conv are denoted by LConv,
Lim, PsT, and PrT., respectively.
A localized convergence space is said to fulfil the Ro-axiem if

Eny —= y implies §—x
{1.e., whenever g nx is convergent, then g‘ canverges to x ) . The sub-
category of localized RD-Spaces 1s denoted by RDLEEDEF RDEiE etc. are de-
fined accordingly.
Finally, we denote by ConsConv the subcategory of Conv which consists
of those convergence spaces where the same filters converge to every point
{i.e., the assigning function is constant).

A11 categories af Definition 3.1 ave topological. Moreowver,
Conv = LConv = Lim = PsT = PrT = Top, Conv = ConsCony, Llonv = R LConv,

and in these chains, every category is properly contained as a bireflective
subcategory in the preceding one{s}. LConv is also bicoreflective in Conv.
The category ConsConv is isomorphic to the categery Grill of grill-
determined prenearness spaces [Ro 751, [BHR 76] and Katétov's filter-mero-
topic spaces [Ka 65]. Similarly, R 1Cony 15 disomorphic to the category
LGrill of localized grill-determined spaces and Katétov's localized filter-
meratopic spaces. LGrill is bicoreflective in Grili,

3.2 Ewample. By 2.2, the category Conv is herediftary. 2.3 suggests
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what the one-point-extensions should look like {cf. the slightly errongous
construction for Lim in {Pe 73: Proposition 8]). For any convergence
space Y, the one-point-extension [Y] canm he described as fallows: All
filters on [Y] converge to =y, while for x € Y, f’—T?q-b x iff

5 Dﬁ'”*v for some '5;»—-?—-} x (or, equivalently, § - % iff

Fry —~—=> %, for x € ¥}. (Here, for filters § on (Y] and Q} en ¥,
11 'Y denotes the restriction of g to ¥ and Tj‘ the filter on [Y]
generated by Cau 3

3.3 Example. (1] LConv is hereditary. This can be concluded from 3.2
and 2.8, or with 2.7, since a simple computation shows that LConv is
closed under formation of one-point-extensions in  Conv.

{2) Again by looking at one-point-extensions, we see that ConsConv 1%

hereditary. For Y € ConsConv, [Y] s given by: g‘ _T?T_} x IfF
§ > nay, for some 0} —— y. Notice that the ane-point-extensions i

ConsConv are not formed as in Conv,

3.4 Example. (1} Recall that the cateqories Top, PrT, PsT, and Lim are
finally dense in LConv, Hence the simplest possibility to prove or disprove
heredity is to check whether the category in question is closed under for-
mation of one-point-extensions in Conv (2.7, 3.3{(1)). In this way we Can
show that Lim and PsT arc hereditary {(which i3 known fram [Fe 771).-

To prove that PrT dis hereditary [He 86] 15 even simpler since the pretopc-
logical space 3 defined by |3]= {0,1,2}, Wi0] = (0,1,27 = }) (2],

(1) = 11,2F constitutes an initially dense subclass of Pri [Bo 75:

proof of 11.2.1], and we have only to check that [:%]Eonv € Pri.~ In the
same way we see that Top is not hereditary: Consider the Sierpinski space
& = (10,13,19.{1),00,113}. Then [&]e,,, = 3 § Top.

{2} A differnt possibility to see that Top 1is not hereditary 1s the
application of 2.3: {B,{1},{0,1,2}} and {8,{1,2},{0,1,2}} are maximal to-
pologies on {0,1,2} which make . a subspace; but there is no greatest
topology with this property.

A + i
: = (Y| U H
3.5 Example. For every Y € R LConv, define Y by 1Y | |¥] {ﬁy}
3 - bk . 1

for x €Y, [ =X iff g’iY ~—> X ; and E’ = >+¢#‘ iff
§ = Cny with y ey implies Q} Y —> y. Then {5 the greatest
localized Rﬂ-conver‘gence space which has ¥ as a subspace. However,

i i : t for the discrete space N
R ECony s not hereditary: It can be shown that for the d1 B
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whose underlying set is the set of natural numbers, N° is not a one-point-
extension of N; in particular, M < [N].— Indeerd, one can prove that none
of the categories of R,-spaces resulting from Definition 3.1 is heraditary.

The behavior of the convergence categories considered in this section
towards heredity is summed up in the following diagram. For completeness,
we added information about cartesian closedness and topolegical universes.

Cew T 7
i ﬁh&uﬁ%ﬁ“llxhhhh Pt —hereditary
| .
: el e ConsConv = Grill | —r—cartesian closed
| | toponlogical
| | universes
LCony N
! r
e o |4
| F\\H ,
| | R LConv ¥ LGrill
| |
b
| ﬂ‘“\rk - r
|
| \
[ | R_Lim
|
| ' |
LI r
i |\
Ly L R_PsT
L] -
m‘xx r
\
I . .
r RD—EI r: bireflective
subcategory
Top r c: bicoreflective
Hhmxﬁhhﬁﬁ[““mnhhhh subcategory
i Top
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